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Free Energy Models for Nonuniform Classical Fluids 
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A number of techniques are presented for extrapolating from knowledge of the 
direct correlation function for a uniform fluid at various densities to that of the 
free energy and associated density profile of a nonuniform fluid. A primitive 
mathematical model is followed by models based upon physical characteristics 
of exactly solved systems, from the nonnegativity of linear response functions to 
the explicit form of a nonuniform hard rod fluid. Attention is paid to physical 
requirements which are not satisfied and suggestions are made for future 
progress. 

KEY WORDS:  Nonuniform fluid; density functional; profile equation; 
positivity restrictions. 

1. I N T R O D U C T I O N  

The theore t ica l  analysis  of nonun i fo rm classical  fluids in thermal  
equ i l ib r ium is a very old  topic  indeed.  One  can go back  to Archimedes ,  
who p r e sumab ly  k n e w - - i n  his own t e r m s - - t h a t  a vo lume r of  s ingle-com- 

ponen t  s imple fluid subjected to a mac roscop ic  force field F(r) ba lanced  
this force agains t  the pressure  forces exer ted on its surface c?z, i.e., 

f F(r) n(r) d3r = fo, P(n(r)) dS (1.1) 

where P(n) denotes  the equa t ion  of state, n(r) the fluid density,  and  dS the 
ou tward ly  d i rec ted  surface element.  Consequent ly ,  le t t ing r---, 0, one has 

F(r) n(r) = VP(n(r) ) (1.2) 
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1158 Percus 

If the force is derived from a potential F =  -Vu,  one then has 

1 
- -  V P ( n ( r ) )  + Vu(r) = 0 (1.3) 
n(1) 

or, by virtue of the thermodynamic relation d P = n  d#, where /x is the 
chemical potential, V(/~(n(r))+ u ( r ) ) =  0, integrating to 

# - u(r)  = # (n ( r ) )  (1.4) 

for appropriate constant #. This, in modern terms, is the prof i le  equat ion 

for a slowly varying external field. 
Although (1.4) is perfectly satisfactory (1) for a fluid whose density 

changes slowly in response to the external field, it is clearly inadequate at a 
wall or at a two-phase interface, where the density changes on a 
microscopic scale. In such cases, the density change is not negligible within 
the correlation length that defines the minimum distance over which a fluid 
has to be uniform in order that its bulk properties be applicable. When this 
situation confronted van der Waals two millenia later, his solution (2~ (after 
false starts by such luminaries as Rayleigh (3)) was, in essence, to imagine 
the intermolecular interaction divided into a small primitive core whose 
associated fluid has a small correlation length and a longer range tail 
potential - ( ~ l ( r - r ' )  (without which a two-phase separation could not 
occur). Under these circumstances, a core particle would be immersed in 
both the external potential field u(r)  and an "internal" average field due to 
the other core particles 

~ i n t ( r )  = - -  ~ ~ l ( r  - -  r')  n(r ' )  dBr , (1.5) 
d 

so that (1.4) becomes instead 

- u(r)  = #o(n(r ) )  - f q~l(r - r ')  n(r ' )  d3r ' (1.6) 

Here, /~o(n) expresses the thermodynamics of the core fluid. 
The van der Waals approach, useful well beyond the range of its 

assumption, does have two obvious deficiencies: the core-fluid correlation 
length is not negligible on the scale of the tail potential, so that short-range 
fluctuational effects, e.g., at a boundary, are poorly estimated, and the 
mean field evaluation of the effective potential omits its rather substantial 
fluctuations. Of course, neither criterion is damning (although the mean 
field technique makes confusing predictions (see, e.g., ref. 4) as to the 
capillarly waves that ride on an interfacial surface), since it may be that 
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effective parameters fitted to one type of observation will do quite well on 
other types. But something more controllable, more of a first-principles 
approach, would clearly be preferable. Unfortunately, this is not only a 
difficult task, but one which runs the risk of providing a formulation with 
such complicated detail that the all-important qualitative aspects are too 
deeply concealed. 

A more pragmatic technique has thus become increasingly popular, 
somewhat along the lines of the Galerkin method (see, e.g., ref. 5) of com- 
putational fame. One simply introduces a class of analytical forms and 
imposes enough restrictions to determine uniquely the form required. The 
difficulty in such an extrapolation method is in a way the complementary 
problem: there are so few firm restrictions that one is compelled to limit 
severely the analytic forms. Indeed, reliable microscopic thermodynamic 
data are pretty much restricted to the particle pair correlations in uniform 
fluid or derived quantities, in particular the inverse linear response function 
(see, e.g., ref. 6) 

R(r - r', n) = 61~(~n(r,)-- u(r) n(r~ ~ n 

- l c2 ( r - - r ' ; n ) )  (1.7) 

where c 2 ( r - r ' ;  n) is the usual direct correlation function at the uniform 
density n. In this paper, I will review and considerably enlarge the class of 
extrapolated analytic forms for the profile and its free energy generator, 
based upon assumed knowledge of the linear response (1.7). It is well to 
point out at the start that any approximation method based upon direct 
correlations alone has built-in potential deficiencies--e.g., spatial 
correlations need not vanish for overlapping hard cores--and I will 
conclude with a discussion of the extent to which the required additional 
information can be incorporated. 

2. G E N E R A T I N G  F U N C T I O N S  

A physical theory must of course address relationships between obser- 
vable quantities. In nonuniform classical fluids, such quantities are restric- 
ted in the main to those indicated or sampled by individual particles: the 
external force field (or potential) and the particle density (for simple 
fluids). The obvious question to ask concerns the response of the fluid to 
an imposed potential field u(r). 

In the grand canonical ensemble, the grand potential f2 serves as a 
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universal generating function, in the sense that if an observable Q~ occurs 
linearly in the energy 

r 1 6 2  (2.1) 

then 

(Q~)  = OQ/O2= (2.2) 

In particular, the external field energy takes the form U = ~  u(r),~(r)d3r, 
where h ( r ) = Z 6 ( r - r , )  is the dynamical variable whose expectation 
@(r) ) = n(r) is the mean density. Hence we have, recalling that u(r) occurs 
only in the combination # -  u(r), where g is the chemical potential, 

6Q 
n(r) - (2.3) 

@ - u(r)  

Note, too, that since (2.2) extends to 

1 ~72s 
<Q~Q~)- <Q~)(Q~) = fl 02~ 028 (2.4) 

then f2 is concave on any parameter set occurring linearly in the energy. As 
an important special case, the structure factor 

1 62f2 1 6n(r) 

f i 6 p - u ( r )  6 p - u ( r ' )  f l @ - u ( r ' )  

= @(r) fi(r') ) - n(r) n(r') 

= n2(r, r') -- n(r) n(r') + n(r) 6 ( r -  r') 

= S(r, r') (2.5) 

is a nonnegative continuous matrix. 
The external potential need not be the independent variable of choice. 

Under two-phase conditions, an infinitesimal change in u(r) causes a 
dramatic change in n(r), so that it is more reasonable to carry out a 
Legendre transformation to n(r) as new independent variable, 

= s + [ n ( r ) [ p -  u(r)] d3r (2.6) Fe[n] 
d 

and now 
# - u(r) = 6F~/6n(r) (2.7) 

F ~ is the bulk, internal, or residual Helmholtz free energy, i.e., 
F - ~ n ( r )  u(r) d3r and indeed (2.7) transcribes to 6F/6n(r)=O at fixed 
{u(r)}. At fixed density n(r), one has again 

< Q~ ) = ~F~/02~ (2.8) 
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but the analog of (2.4) accumulates correction terms. (7) However, it is true 
that 

c~2F ~ @ - u ( r )  _ (  ~ f 2  ) 1 

an(r) 6n(r') = f in( / )  = \ 6 l a -  u 6p - u_ (r, r') 

1 S-*(r ,  r') 1 ~ 6 ( r z r '  ) c2(r, r ' ) ]  

1 
fl C(r, r') (2.9) 

is nonnegative, F ~ being a convex functional of the density. 
One might also imagine changing the internal potential. If this is 

restricted to the pair interaction ~b(r, r'), then (2.2) and (2.8) clearly imply 
that 

1 6 0 ,  1 c~F/~, 
n2(r' r') = 2 6~b777, r ) , = 2  &b(r, r ) , (2.10) 

It is extremely useful, but rarely practicable, to Legendre transform so that 
n2(r, r') takes over as independent variable. Applied to f2, then, one has 

1 
H[u,  n2] =-~ ff n2(r , r') qS(r, r') d3r d3r ' -  if2 

(2.11) 
n(r) = 6H/61t - u(r), ~ r :(b( , r ' )=  -6H/6n2(r ,  r') 

where H is now the enthalpy. Applied to F ~ instead, one has 

1 
- k  TS[n,  n2] = F ~ - ~ f l  n2(r, r') qb(r, r') d~r d3r ', 

- u ( r ) -  6k TS/an(r),  �89 r') = 6k TS/an2(r, r') 
(2.12) 

where S is the system entropy. I will not further discuss such nz- 
transformed ensembles in this paper; there are model systems in which they 
become manageable. ~8~ 

3. A P R I M I T I V E  F O R M  

The relevant sequence in a density-transformed grand ensemble is 

# - u(r) = hE ~ [n]/c~n(r) (3. la) 

C(r, r )=  fiR(r, r ' )=  62f l f~[n] /6n(r )  6n(r') (3.1b) 

I have suggested that approximations to the profile relation (3.1a) may be 
developed by using the presumed knowledge of the complete direct 
correlation (3.1b) in bulk (uniform) fluid as input data. Strictly adhered to, 
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this raises the problem of integrability [ s i nce /~ -  u(r) is an n(r) derivative, 
it must satisfy 6(l~-u(r))/6n(r')=f(l~--u(r'))/6n(r)], and is most easily 
avoided by choosing instead to model the free energy F ~ itself. It is clear 
from (3.1a) and (1.4) that F ~ in the case of local bulk thermodynamics may 
be taken as 

= f n(r)f(n(r)) d3r (3.2) F~[n] 

where f(n) is the bulk specific Helmholtz free energy, satisfying the 
thermodynamic relation d(nf)=# dn. Proceeding to the van der Waals 
approximation (1.6), one has instead 

= f n(r)f(n(r)) F~[n] d3r 

; f  El(F) ~I(F-- r') n(r') d3r d3r ' (3.3) 

Let us try to generalize (3.3), which differs from (3.2) by the addition 
of a term bilinear in the density. If we were to imagine (3.2) as a slow 
variation approximation, the next order would be expected to bring in a 
density gradient term, i.e., one linear in the density at a point other than 
that being observed. We are thus led to investigate a functionally 
parametric model of the form 

= ~ n(r)fo(n(r)) Fr d3r 
J 

1 +~ JJ n(r)  w(r  - r', n(r ' ) )  d3r  d3r  ' (3.4) 

where, since it is difficult to visualize a reasonable way of avoiding it, we 
will assume that w(r, n) is of even parity in the vector r. It follows then that 

#--u(rl)=t~o(n(rl))+ ~ w(r l -r ' ,n(r ' ) )d3r  ' 

+ l  f n(r) w' (r-r , ,n(r) )d3r '  

R(r~,r2)=#'o(n(rl))a(rl--r2)+lw'(rl--r2, n(r2)) (3.5) 

1 
+ -~ w'(r 2 -- r,, n(rl)) 

+-~ n(r) w"(r -- rl, n(rl)) d3r 6(rl - r2) 
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where primes consistently refer to differentiation with respect to the density 
argument, and/l  o dn = d(nfo). 

On taking the uniform density limit n(r)~ n, we find that (3.4) and 
(3.5) now reduce to 

f(n)= fo(n)+~ f w(r,n)d3r 

1 n ~(n) = ~o(rl)-~ f w(r, El)d3r-~-~ f 14/(r, H)d3r 

R(r, - r2, n) = #'o(n) c~(rl - r2) + w'(ri -- r2~ n) 

rl 
+ ~ f  w"(r, n)d3rb(r~-r2) 

(3.6a) 

(3.6b) 

(3.6c) 

with the left-hand sides to be regarded as known bulk data. If w has no 
h-function singularity and w(r, 0)=0,  then the representation fiR(r, n)= 
(l/n) h ( r ) -  c2(r, n) coupled with (3.6c) tells us that 

fiw'(r, n) = -c2(r, n) (3.7a) 

n f (3.7b) filio(n) +~ fiw"(r, n) d3r=ln 

Integrating (3.7a) and substituting into (3.6b), we have 

+ 1  (?In  n') la~ ll(n) 2-fi ~n c (r, dn' d3r] (3.8) 

which by virtue of the well-known relation #'(n) = ~ R(r, n) d3r is seen to 
imply (3.7b) as well. Furthermore, (3.6a) results from integration of (3.6b), 
and can now be written as 

fo(n)= f(n) + + ifo C2(r', n') dn' d3r ' (3.9) 

We can therefore conclude by substituting (3.9) and the integrated 
(3.7a) into (3.4) to obtain the expression 

F~[n] = f n(r) f(n(r)) d3r 

1 [.(r) 
(3.1o) 
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which duly incorporates all of the bulk information. Of course, the profile 
equation 

i~ - u(r) = #(n(r)) + c2(r - r', n) dn d3r ' 
( r ' )  

+ ' ~  [ n ( r ) - n ( r ' ) ] c a ( r - r ' , n ( r ) ) d 3 r  ' (3.11) 

follows at once. This is very much in the same family as that considered by 
Ebner eta/. (9) and is immediately applicable to substrate-bounded fluids. 
However, it also encounters the difficulty that two-phase interfaces require 
bulk information at unphysical interphase densities. Presumably, this 
should be obtained by following a van der Waals loop, which does corres- 
pond to constrained uniformity. (1~ 

4. ASSOCIATED M O D E L S  

Since the particular form (3.4) is notably nonunique, many other 
possibilities have been suggested. Meister and Kroll (n) developed the 
conceptually elegant idea of expanding the density profile about a slowly 
varying reference, which was then determined by imposing the condition of 
minimum sensitivity on the free energy. Groot and Van der Eerden (12) then 
extended this free energy to the model form 

1 
F~= ~ f n(r)[-ln n ( r ) -  l ]  d3r + f n(r) fe~(~(r))d3r 

2 J J  

where fex is the excess specific free energy for the uniform fluid and ~(r) 
plays the role of reference density. Making (4.1) stationary with respect to 
~(r) and imposing the reproduction of the bulk direct correlation then 
yields the interrelations 

f w'(r - r', ~(r))[n(r') - ~(r)] d3r '= 0 

~ n 
c2,k(n) = wk(n) + ~ - - ~  [ ~ ( n ) ]  2 

where fk denotes the Fourier transform of f(r).  

(4.2) 
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The model (4.1) can also count among its ancestors a number of 
approaches in extended mean field format. Typical is that of Tarazona and 
Evans (13~ (see also Mederos et al.(~4)), in which one sets 

1 
F Z :  ~ f n(r)[ln n(r)--  1 ] d3r + f n(r) foCX(ff(r))d3r 

1 
f f  n(r) n(r') (21(r - r') d3r d3r ' (4.3) 

where f~X(n) denotes the excess free energy for the core fluid, - r  is the 
tail potential, and 

ri(r) = f e( a--  I r -  r'] ) d3r'/( 47ra 3) (4.4) 

averages over the diameter-a core of the core fluid. Perhaps the earliest 
version, that of Nordholm et al., I~s) used the basic excluded-volume 
van der Waals equation approximation f ~ ( n ) - -  - ln (1-n3na3) .  More 
recently,  Baus  a6 replaced the e ( a - ] r - r ' J )  in (4.4) by the zero-density 
Mayer function e x p [ - f l r  

Another sequence of model free energies has been proposed in which 
advantage is taken of the existence of exact solutions for a very small num- 
ber of model fluids. Prototypical is the one-dimensional hard rod fluid, for 
which one finds the exact result (17) 

where 

1 + I n A x )  f~ dx F/~ = fl f n(x)[ln n(x) - 13 dx (4.5) 

1 
f~X(n) = - ~ l n ( 1  - n a )  

1 1 1 n(y)  dy 

Here fex is of course the exact bulk specific free energy. The appearance of 
the linear "surface" and "volume" averages n~ and n~ is striking, suggesting 
that an arbitrary three-dimensional nonuniform fluid be modeled by the 
analogous expression, in which appropriate averages 

no(r ) = f er(r - r')  n(r ' )  d3r ' 

nr = f "c(r- r') n(r') d3r ' 

(4.6) 
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are inserted. The problem is that of the determination of the weight 
functions a and z. When "surface" and "volume" are meaningful concepts, 
such as in a hard sphere fluid, it is reasonable to choose 

n~(r) = - - 1  f n(r') dS' 
"Ka2 r-r ' j  =a/2 

(4.7) 
6 c nr(Y) n(r ' )  d3r , 

=~-~a ~ JIr-r'l ~ . / 2  

This was carried out by Robledo, (18) who showed that known bulk proper- 
ties were reproduced to decent accuracy. 

If one wants to take explicit advantage of known bulk data on direct 
correlations, a and r cannot be chosen at will. Indeed, by differentiating the 
three-dimensional version of (4.5) twice with respect to density, which is 
then set to uniformity, n, one finds (19) 

c~(r 1 - r2, n) = -2B2(n)  f a(r 1 - r) "c(r 2 - -  r) d3r 

- nB'2(n) f "c(rl - r) v(r 2 - r) d3r (4.8) 

where B2(n)= [~P(n ) -n] /n  2. The knowledge of c 2 at two reference 
densities can be used to determine the two functions cr and v (most readily 
via Fourier transform). If the surface-volume interpretation is taken more 
seriously, one can impose the scaling condition (2~ 

a(r) = 5 ~-~ r (4.9) 

and so have just one reference density to employ. But the availability of 
two densities is certainly useful if a two-phase system--primarily at two 
densities--is being studied. In fact, the clear disadvantage of the 
generalized (4.5) is that one cannot make use of knowledge of the direct 
correlations over the full range of densities. 

5. R A N K - O N E  REPRESENTATION 

The exactly solvable hard rod fluid has another suggestive con- 
sequence. If one computes the nonuniform inverse linear response by two 
differentiations of (4.5), there results uT) 

~(x-x ' )  
C(x, x ' ) - - -  c2(x, x') 

n(x) 

= f q(x", x) n(x") q(x", x') dx" (5.1) 
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where 

I ;  l 
X " + a  

" I - n ( z )  & q,(x , x ) = b ( x - x " ) / n ( x ) + e ( x - x " ) e ( x " - x + a ) / /  x', 

e as usual denotes the Heaviside step function. In operator form, (5.1) 
reads C = q+ nq ,  consistent with the observation (2.9) that C is a non- 
negative operator, and an obvious extension of the Wertheim-Baxter (2~'22) 
k-space decomposition 

Ck = 0ff 0~ (5.2) 

To see what this expression might indeed suggest, let us, following the 
hint of (4.5), write F/~ as a general function of linear averages: 

where 

fiFa[n] = f ~(nl(r)  , rt2(r),...) d3r 

n~(r) = f r~(r - r') n(r') d3r ' 

(5.3) 

We assume that r~ is normalized to unity, so that n~(r)= n, where n(r)= n. 
It follows at once by differentiation that 

f l (#-u(r) )= f Z f ~ ( R -  r) 05' ( . . .n,(r).  ..) d3R 

and then that 

C(r, r') = ~ f r~(R - r) r~(R-  r') q5 ~,,~( .. n~,(R),..) d3R 

This shows that for a uniform fluid, 

(5.4a) 

(5.4b) 

Tc~,k T fl, k (5.5) 

which, as n varies, lies in the vector space spanned by the functions of k, 
{r~,krZ, k}. In order to achieve the form (5.2), it is sufficient to arrange the 
definitions of the ~ so that 

clg,~,,z(n) = K~(n) Kz(n) (5.6) 

for real K~, i.e., to choose the r~ and K~(n) to satisfy 

Qk(n) -- ~ K~(n)~, ,  (5.7) 
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We can thus assume that the K~(n) and ~ are known. The multi- 
variable function @(-- .nT(r) . . . )  is, to be sure, not then determined by 
(5.6). But if we extend (5.6) to the rank-one requirement 

qb"==e(. . . n . . . ) = K~(. . . nw . . . ) Ke( .  . . nT . . . ) (5.8) 

where K=(n, n,...) = K=(n), then the nonuniform (5.4b) factorizes as well, 

C(r, r') = f ~, K~( . . .  n T ( R ) . . . )  % ( R  - r) 

X E K [ 3 ( ' " n v ( R ) ' " )  " c~(R-  r')  d3r ' (5.9) 

and little arbitrariness remains. To solve (5.8), we observe that since the 
Jacobian matrix [(8/8n~)(Sq) /8np)]  is of rank one, then the 8qS/Snz are all 
functionally related, and we can write 

~r  = g=(v) (5.10) 

for some unknown function v. Let us define 

r = - P  + ~ n e gt~(v) (5.11) 

Then 

8P/~?n~ = -oq ) /Sn~  + g~,(v) + y" nl~ g'~(v) 8v/~3n:,= I ~  nl~ g}(v)] By~an= 

so that the two-column matrix [8P/Sn~,  8v/Sn~] is of rank one. It follows 
that P =  P(v) ,  whence 

= E n. g e ( v ) -  P(v) 

Furthermore, since 

n~ g'~(v) 8v/an~ = 8P(v)/On= = P ' (v )  Ov/Sn~, 

we have the relation 

P'(v) = 'U g)(v) 

Returning to (5.10), we see that 

g2cI)/gn~ 8n/~ = g}(v) av/gn= = K~KI~ 

(5.12) 

(5.13) 
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implying that 

Ov/~?n~ = K~/w, g'~(v) = K~ w (5.14) 

for some w. Now we can assume without loss of generality that the function 
v reduces to n when all n~=n:  v(n, n,.. .)=n. Hence 32 Ov/~?n~= 1 at com- 
mon n, or w(n, n,...)=32 K~(n), from which 

g'~(n) = K~(n) ~ K~(n) (5.15) 

At common n = v, (5.13) now reads 

P'(v) = v ~ g'~(v) (5.16) 

Hence (5.13), (5.15), and (5.16) determine the function v by the implicit 
relation 

2 (n~ - v) K~(v) = 0 (5.17) 

There remains only the transcription of (5.12), according to (5.12), (5.15), 
and (5.16), as 

. . . . .  v 

o5( .)= (5.18) 

which is the desired result. 
It is not necessary to find the decomposition (5.7) explicitly. From 

(5.7), we have 

Q(r, n)= ~ X~(n) %(r) (5.19) 

It follows that 

f Q(r, n) d3r=~ ,  X~(n) 

(5.20) 

f O(r - r', n) n(r') = ~ K~(n) n~(r) d3r , 

so that (5.17) and (5.18) reduce to 

f,r, ff r  = Q(r - r', n)[n(r') - nJ Q(r", n) d3r ' d3r" dn (5.21) 

where 

f Q ( r - r ' ,  v (r ) )[n(r ' ) -  v(r)] d3r'= 0 
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For example, in the case of hard rods, where 

Q(x, n) = 6(x)H e(x + a) e ( -  x) nl/2 (5.22) 
n 1/2 1 - na 

the v equation is readily solved as 

n(x) 
v(x) = 1 + an(x ) -  ~x +a n(y) dy (5.23) 

and ~b then integrates without difficulty to 

n(x) 
q~[n] =n (x ) In  1 - ~ + ~ n ( y )  dy - n ( x )  (5.24) 

whose spatial integral is identical to (4.5). 
But in fact the formulation is not entirely satisfactory. We see from 

(5.14) that K~= [g'~(v)~?v/~n~]l/2; on differentiating (5.17), we find 

a~/a~ = x~(~)//~ [K,(~) - (n~- ~) K~(v)] 

Thus, on inserting (5.15), 

2 z<,(v) ~'/~ 
K~ = K~(v) Z K,(v)- (v,-  v) K;(v)J (5.25) 

The singular part of C(r, r'), we know, must have the form 6(r -  r')/n(r), so 
that we can always imagine ro(r)=6(r), with Ko=no(r) 1/2. While 
certainly Ko(n)= n 1/2, it seems clear from (5.25) that one cannot rely on 
obtaining Ko = no1/2. Therefore, the singular part of the linear response is 
simply wrong, and something must be done. Of course, this defect is not 
uncommon; it affects models ranging from the original van der Waals 
(3.3), to the generalized VdW of Nordholm and Haymet, (23) on to more 
sophisticated attempts such as that of Mazuruk et aL (24) It is nonetheless 
deplorable. 

6. R A N K - T W O  R E P R E S E N T A T I O N  

To repair the possible inadequacy of the ansatz (5.8), let us return to 
exactly solved models. An extremely simple one serves as entree; it does 
involve many-body forces, but that is irrelevant in the present format. In 
this model, one has 

1 
B F B = f n ( r ) [ l n n ( r ) - l ] d 3 r - ~ f f n ( r ) c ( r - r ' ) n ( r ' ) d 3 r d 3 r '  (6.1) 
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and it can be verified (25) that there is an underlying many-body potential 
energy providing that c(r -r ' )>~ O, or, in the infinite-dimensional case, for 
any short-range repulsive two-body interaction. (26~ We have at once from 
(6.l) the Debye-Hfickel-like 

fi(# - u(r) ) = In n(r) -- f c(r--  r') n(r') d3r ' (6.2) 

and the extremely simple linear response 

c2(r, r') = c(r - r') (6.3) 

But (6.3) is significant. It states that 

6 ( r - r ' )  
C(r, r') - - -  c(r - r') (6.4) n(r) 

which shows at once that the rank-one form (5.9) cannot hold, whereas 
rank two, e.g., in the form 

1 1/2 C ( r , r ' ) = f [ n ( r ) - l / 2 0 ( r - - R ) - ~ n ( r )  c ( r - R )  1 

1 ~ l/2 X[r/(r') l/2 ~ ( r t - - R ) - - - ~ n ( r  ) ' C(Ft-R)]d3R 
~ f n ( r ) ' / Z c ( r - R ) n ( r ' ) l / 2 c ( r ' - R ) d 3 R  (6.5) 

is perfectly fine. Equation (6.5) points out, incidentically, that the non- 
negativity of the operator C(r, r') may be a consequence of the restricted 
density range permitted, and need not be manifest. 

A further hint of the underlying structure is afforded by the obser- 
vation that (5.1), which led to the formalism represented by (5.9), employs 
a factor Q(x ,n)  of (5.19), depending upon the nonsymmetric weight 
function 

z(x - x') = (l /a) e(x - x'  + a) e ( x ' -  x) 

The breaking of parity in one dimension is not very serious, but raises sub- 
stantial problems in three dimensions. To bring this issue into sharper 
focus, let us recall the factorization structure (5.2) of the hard sphere fluid 
in PY approximation. One finds (21'22) 

Qk = Ko(n)~o,k + Kl(n)~l,~ + K2(n)f2,k (6.6) 
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where 

Ko(n)  = n - 1/2 

Percus 

~o,k = 1, ~l.k = -2 (e - ik"  _ 1 + i k a ) / ( k a )  2 

- ~ k  a ) / ( k a )  "~2,  k = - 6 i ( e  ika 1 + ika + 1 2 2 3 

3 r/(2+~/) 2 q( l+2~/)  
K l ( n ) - n U 2  (1--r/)  2' K 2 ( n ) = n l / 2  (1 _q)2  

tl = nTra3/6 

(6.7) 

Now the one-dimensional Fourier transforms of the ?i,k are indeed of the 
core range a, but the three-dimensional transforms mandatory for a non- 
uniform fluid, 

z(r) = ~ ~kk sin kr  dk  (6.8) 

oscillate forever, directly attributable to the odd imaginary part of fk. 
The remedy is clear. We write 

?k = ?'k -- ikg)~ (6.9) 

and correspondingly 

Ok = O~ - i kO~ (6.10) 

where 0 ;  and 0~ are real, even functions of k. Then 

Ck = (Q'k) 2 + k2(O'~) 2 = Q k Q k  ~' (tkQ~)( - "  - tkQk" ~ ") (6.11) 

which is the square of a scalar plus the square of a vector, a generalized 
rank-two decomposition. In particular, in the PY case, we have 

where 

Generalization 

C(k) = [Ko(n)?o, k + Kl(n)~3,k + K2(n)?4,k] 2 

+ ; K l ( n )  V ~ 4 ,  k - -  k2(n)  (6.12) 

73,~ = 2( 1 - cos k a ) / ( k a )  2, ~4,~ = -6(s in  ka  - k a ) / ( k a )  2 

~5,k = --24(cos k a -  1 + �89  4 

of (5.6) to the rank-two case is somewhat involved, 
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and will be reported in a later publication. A more specialized form in 
which rank two occurs in a natural way is given by 

flF';f n(r)[ln n(r)-  1 - I n  q(R)]  d3R (6.13) 

for we can then write 

fl(li-u(r)) =In n ( r ) -  In 4/(r)-  f n(R) fiO(R ) d3 R (6.14) 
~(R) 6n(r) 

as well as, after a slight rearrangement, 

(.5(r- R) 
C(r, r') = ] \ n(R)l/2 

x \ n(R)l/2 

, (R)  'j2 

O(R) 6n(r) / 

~(R) cSn(r )] 

- f  n(R) 62t~(R) ,3 
(p(R) 5 n ~ ' )  a ~( (6.15) 

with precisely the correct singularity structure. Again, it is convenient to 
imagine that the n dependence of O(R) occurs locally via the nonlocal 

n~(R) = f z~(R - r') n(r') d3r ' (6.16) 

but to distinguish two types of r~, the scalars in which 

~ S :  f %(R) d3R=l (6.17) 

and the vector, i.e., gradient, components, in which 

c~V: f r~(R)d3R=O (6.18) 

Then, in obvious notation, 

C(r,r ' )=f[  a(r-R)  

[3(r'--R) 
• L n(r) 1/2 

n( R ) l/2 ] 
Z F ~ ' % ( r - R )  
ez 

n(R)l/2 ] 
Z [[lflTJfl(r'-- R) d3e 

"c~(r' -- R) d3R (6.19) 
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reducing in the uniform case to 

C k  = / , / -  1/2 __ 

/71/2 

n 
" 0)r~,~r~,~ (6.20) 

where the arguments of ~ symbolize the fact that n~--* n for ~ ~ S, n~ ~ 0 
for cce V. 

We now have to extend the analysis of Section 5. Since a gradient can 
appear in ~ only when dotted with another gradient, we will certainly have 
O's(n, 0 ) = 0  for e e  V, as well as O~(n, 0 ) = 0  for t e e S , / ? e  V or vice versa. 
Hence, assuming a three-dimensional S S +  V.  V rank-two form, we will 
have to compare (6.19) with input bulk data appearing as 

~ e S  B e S  

The simplest assumption, with attendant disadvantages which will soon 
appear, is that the rank-one character of the second part of (6.21) extends 
to the nonuniform case. Thus, we require 

~9'~.~/0 = - Q ~ Q ~  (6.22) 

with the boundary conditions 

O's(n, O)/O(n, O) = S~(n) for cr 6 S 
(6.23) 

Q~(n, 0) = 0 for ~ E S, Q~(n, O) = V~(n) for c~ ~ v 

Proceeding then as in Eqs. (5.9)-(5.13), we find from (6.22) that 

~?O/r = g~(v) (6.24) 

for suitable v, which will now be fixed by imposing the condition P ( v ) =  - v  
(since P no longer denotes pressure in the present context). We therefore 
define 

tp = ~ n~ g~(v) - v (6.25) 
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and condition (6.24) readily reduces to the single condition 

1 = ~ n ~ g ; ( v )  (6.26) 

which determines v and guarantees (6.22), with the identification [using 
Ov/On~ - g ~ (  )/7~n=g'~'(v)] 

The functions g~(v) are then to be determined from the boundary con- 
ditions, which reduce to 

g~(v(n, 0)) 
= S~(n), ~ e S 

n Z ~ s  gl~(v(n, 0)) - v(n, O) 

g'~(v) ~/2 1 (6.28) 
[ZBn~g~(v)]  {,=} ~ (n .o) [nZl~sg~(v(n ,O)) -v(n ,O)]  1/2 

={0,  ~ S  

V~(n), ~ ~ V 

It is clear that (6.28) are self-consistent only if v(n,O)=c is some 
n-independent constant, that the S~(n) have a common structure 
(an + b) ~ to within proportionality, and that the V~(n) similarly have a 
common structure. Thus, the simplified treatment based upon (6.22) is 
restricted, as was the extension of (4.5), to a density domain small enough 
that such a representation is reasonable [in which case the g~(v) are highly 
underdetermined]. A true higher rank representation is called for. 

7, D I S C U S S I O N  

The task of extrapolating from a spectrum of bulk data to the 
behavior of a nonuniform fluid requires that a course be steered between 
overdetermination and underdetermination. At the direct correlation 
function level, we have seen that as soon as one passes beyond the basic 
extrapolation (3.10), one may fail to include other than a small selection of 
bulk data [(4.5) and the following, or (6.28)], the basic 6-function 
singularity may only be approximated [Eq. (5.15)], or the short-range 
direct correlations may be inadequately represented [Eq. (4.4)]. In fact, 
none of these techniques even attempts to reproduce the short-range 
density correlations when known, e.g., the vanishing distribution when 
hard cores overlap, or the possibility of collective modes contributing to 
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anomalous long-range correlations such as those associated with self-main- 
tained interfaces. (4) In the abstract, there is no problem: one simply 
includes enough functional generality in the free energy ansatz--but  not 
too much-- to  accommodate the additional data. 

The hard core overlap case is an example of independent data which 
might be used for fine tuning. It is a special case of an independent 
relationship involving the density correlation function, the simplest of 
which is the second of the YBG hierarchy 

Vn(r) + n(r) V/~(r) + f n2(r, r') V~b(r, r') d3r'= 0 (7.1) 

for known guaranteed two-body interaction ~b(r, r'). Although (7.1) has not 
been used in precisely the fashion suggested above, its obvious relation to 
(2.7), in the readily derivable form (27'28~ 

Vn(r) + n(r) V//u(r) = f c2(r' r') Vn(r') d3r ' (7.2) 

with c 2 of the generalized (4.5), has led (29) to interesting closure 
approximations. 

A possibility which has been examined is that of inserting correlation 
function information directly into the free energy ansatz. For example, 
Curtin and Ashcroft ~176 made use of (2.10) to turn the interaction up from 
zero to its final value: ~b~.(r, r ' ) =  2~b(r, r'), whence 

i~aF#[n] d2 Fe(n) = F~[n] + a)t 

ffff r') 6Ff[n]  d2 d3r d3r ' = fg(r )  + 02 g~c~x(r, r') 

1 ~ 1 
= F o e [ n ] + s f f  n(r) n(r ) (b(r-r ' )  f ~ g;.(r,r ')d2d3rd3r ' (7.3) 

However, they then made the ansatz 

r - r') g;~(r, r') d)o 

f f: - * w ( r - r ' ; p ( r ) )  O(r - r" )  g~,(r-r";p(r))d2d3r " (7.4) 

in terms of the bulk correlation g at density p(r), where 

p(r) = f w(r -- r'; p(r)) n(r') d3r ' (7.5) 
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Thus, although demanding reproduction of bulk direct correlations gives 
quite decent results, the short-range restrictions enforced by the factor 
0~(r-r') are lost. 

Even more severe requirements can be adopted. Since FB[n] generates 
all direct correlations and therefore all correlations, further members of the 
YBG hierarchy could be used as well. In fact, it would be interesting to use 
the direct correlations from an F ~ ansatz to close the YBG sequence 
without bothering to demand identity of bulk data. Such approaches, 
which seem computationally feasible, have not been implemented. 

Finally, there is the long-range correlation problem, which has indeed 
been faced, if only from behind. The point is that, if, instead of a non- 
uniform ansatz reproducing bulk distribution data, one only asks that it 
mimic a reference, e.g., hard core system, then the remaining interaction 
can be appended as a mean field term--see (3.3). In such a case, self-incon- 
sistent long-range correlations along an interface will indeed be produced. 
But sufficient conditions to accomplish this in a self-consistent fashion have 
not yet been enunciated. The field is clearly in its early stages. 
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